Skip to main content
Log in

Primary molecular basis of androgenic gland endocrine sex regulation revealed by transcriptome analysis in Eriocheir sinensis

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In crustaceans, the male sexual differentiation and maintenance are specially regulated by androgenic gland (AG). However, little is known about the genes involved in the regulation process. RNA-Seq was performed on AG with ejaculatory duct (AG_ED) and ejaculatory duct (ED) as control in Eriocheir sinensis, one of the most important economic and fishery crabs with typically sex dimorphism. A total of 925 unigenes were identified as differentially expressed genes (DEGs) and the expression of nine genes randomly selected was confirmed by qRT-PCR. 667 unigenes were up-regulated in AG_ED, being supposed to be AG preferential genes. Among them, the full length of insulin-like androgenic gland factor (IAG) cDNA named as Es-IAG was obtained as a logo gene of AG, which together with the genes insulin-like receptor (INR), and single insulin binding domain protein (SIBD), might constitute the sex regulation pathway. Several sex related genes were identified, and their function will have to be investigated. Also, the identification of juvenile hormone epoxide hydrolase 1 (JHEH1), ecdysteroid 22-hydroxylase (DIB) and ecdysone receptor (ECR) preliminarily clarified the molecular regulation mechanism of eyestalk-AG-testis axis, which plays important roles in molting and reproduction. The results will enhance our understanding for the molecular basis of the AG involved in male sex regulation in crabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aflalo E D, Hoang T T T, Nguyen V H, Lam Q, Nguyen D M, Trinh Q S, Raviv S, Sagi A. 2006. A novel two–step procedure for mass production of all–male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 256 (1–4): 468–478.

    Article  Google Scholar 

  • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology, 11 (10): R106.

    Google Scholar 

  • Armstrong S P, Caunt C J, Fowkes R C, Tsaneva–Atanasova K, McArdle C A. 2009. Pulsatile and sustained gonadotropinreleasing hormone (GnRH) receptor signaling: does the Ca 2+ /NFAT signaling pathway decode GnRH pulse frequency? Journal of Biological Chemistry, 284 (51): 35 746–35 757.

    Article  Google Scholar 

  • Asazuma H, Nagata S, Kono M, Nagasawa H. 2007. Molecular cloning and expression analysis of ecdysone receptor and retinoid X receptor from the kuruma prawn, Marsupenaeus japonic u s. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148 (2): 139–150.

    Article  Google Scholar 

  • Bliss S P, Navratil A M, Xie J J, Roberson M S. 2010. GnRH signaling, the gonadotrope and endocrine controlof fertility. Frontiers in Neuroendocrinology, 31 (3): 322–340.

    Article  Google Scholar 

  • Chandler J C, Aizen J, Elizur A, Battaglene S C, Ventura T. 2015. Male sexual development and the androgenic gland: novel insights through the de novo assembled transcriptome of the Eastern spiny lobster, Sagmariasus verreauxi. Sexual Development, 9 (6): 338–354.

    Article  Google Scholar 

  • Chang E S, Mykles D L. 2011. Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology, 172 (3): 323–330.

    Article  Google Scholar 

  • Charniaux–Cotton H. 1955. Le déterminisme hormonal des caractères sexuels d’ Orchestia gammarella (Crustacé Amphipode). Comptes Rendus de l’Academie des Sciences, 240: 1 487–1 489.

    Google Scholar 

  • Chung A C K, Durica D S, Hopkins P M. 1998. Tissue–specific patterns and steady–state concentrations of ecdysteroid receptor and retinoid–X–receptor mRNA during the molt cycle of the fiddler crab, Uca pugilator. General and Comparative Endocrinology, 109 (3): 375–389.

    Article  Google Scholar 

  • Chung J S, Manor R, Sagi A. 2011. Cloning of an insulin–like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: implications for eyestalk regulation of IAG expression. General and Comparative Endocrinology, 173 (1): 4–10.

    Article  Google Scholar 

  • Cui Z X, Li X H, Liu Y, Song C W, Hui M, Shi G H, Luo D L, Li Y D. 2013. Transcriptome profiling analysis on whole bodies of microbial challenged Eriocheir sinensis larvae for immune gene identification and SNP development. PLoS O ne, 8 (12): e82156.

    Article  Google Scholar 

  • Dittel A I, Epifanio C E. 2009. Invasion biology of the Chinese mitten crab Eriochier sinensis: a brief review. Journal of Experimental Marine Biology and Ecology, 374 (2): 79–92.

    Article  Google Scholar 

  • Du Y X, Ma K Y, Qiu G F. 2015. Discovery of the genes in putative GnRH signaling pathway with focus on characterization of GnRH–like receptor transcripts in the brain and ovary of the oriental river prawn Macrobrachium nipponense. Aquaculture, 442: 1–11.

    Article  Google Scholar 

  • Durica D S, Chung A C K, Hopkins P M. 1999. Characterization of EcR and RXR gene homologs and receptor expression during the molt cycle in the crab, Uca pugilator. Integrative and Comparative Biology, 39 (4): 758–773.

    Google Scholar 

  • Durica D S, Wu X H, Anilkumar G, Hopkins P M, Chung A C K. 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Molecular and Cellular Endocrinology, 189 (1–2): 59–76.

    Article  Google Scholar 

  • Gai Y C, Wang L L, Song L S, Zhao J M, Qiu L M, Xing K Z. 2010. A putative endocrine factor SIBD (single insulin binding domain protein) involved in immune response of Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology, 28 (1): 10–17.

    Article  Google Scholar 

  • Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad–Toh K, Friedman N, Regev A. 2011. Full–length transcriptome assembly from RNA–Seq data without a reference genome. Nature Biotechnology, 29 (7): 644–652.

    Article  Google Scholar 

  • Guan W B. 2003. Studies on the structure and function of male and female reproductive system and spermatophore artifical transfer of the mud crab Scylla serrata (Forskal). Xiamen University, Xiamen. (in Chinese with English abstract)

    Google Scholar 

  • Hansen D, Pilgrim D. 1999. Sex and the single worm: sex determination in the nematode C. elegans. Mechanisms of Development, 83 (1–2): 3–15.

    Article  Google Scholar 

  • He L, Wang Q, Jin X K, Wang Y, Chen L L, Liu L H, Wang Y. 2012. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS O ne, 7 (3): e33735.

    Article  Google Scholar 

  • Herborg L M, Rushton S P, Clare A S, Bentley M G. 2003. Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia, 503 (1–3): 21–28.

    Google Scholar 

  • Hopkins P M. 2009. Crustacean ecdysteroids and their receptors. In: Smagghe G ed. Ecdysone: Structures and Functions. Springer, Dordrecht, p.73–97.

    Book  Google Scholar 

  • Hsu S Y, Kaipia A, McGee E, Lomeli M, Hsueh A J W. 1997. Bok is a pro–apoptotic Bcl–2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti–apoptotic Bcl–2 family members. Proceedings of the National Academy of Sciences of the United States of America, 94 (23): 12 401–12 406.

    Article  Google Scholar 

  • Huang X S, Ye H H, Huang H Y, Yang Y N, Gong J. 2014. An insulin–like androgenic gland hormone gene in the mud crab, S cylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction. General and Comparative Endocrinology, 204: 229–238.

    Article  Google Scholar 

  • Hudson C, Clements D, Friday R V, Stott D, Woodland H R. 1997. Xsox17α and–β mediate endoderm formation in Xenopus. Cell, 91 (3): 397–405.

    Article  Google Scholar 

  • Hwa V, Oh Y, Rosenfeld R G. 1999. The insulin–like growth factor–binding protein (IGFBP) superfamily. Endocrine Reviews, 20 (6): 761–787.

    Google Scholar 

  • Jin S B, Fu H T, Zhou Q, Sun S M, Jiang S F, Xiong Y W, Gong Y S, Qiao H, Jiang W Y. 2013. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PLoS O ne, 8 (10): e76840.

    Article  Google Scholar 

  • Kanai Y, Kanai–Azuma M, Noce T, Saido T C, Shiroishi T, Hayashi Y, Yazaki K. 1996. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. Journal of Cell Biology, 133 (3): 667–681.

    Article  Google Scholar 

  • Katakura Y. 1989. Endocrine and genetic controlof sex differentiation in the malacostracan crustacea. Invertebrate Reproduction & Development, 16 (1–3): 177–182.

    Article  Google Scholar 

  • Kelley K, Schmidt K E, Berg L, Sak K, Galima M M, Gillespie C, Balogh L, Hawayek A, Reyes J A, Jamison M. 2002. Comparative endocrinology of the insulin–like growth factor–binding protein. Journal of Endocrinology, 175: 3–18.

    Article  Google Scholar 

  • Khalaila I, Manor R, Weil S, Granot Y, Keller R, Sagi A. 2002. The eyestalk–androgenic gland–testis endocrine axis in the crayfish Cherax quadricarinatus. General and Comparative Endocrinology, 127 (2): 147–156.

    Article  Google Scholar 

  • Kim H W, Chang E S, Mykles D L. 2005. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. Journal of Experimental Biology, 208 (16): 3 177–3 197.

    Article  Google Scholar 

  • Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics, 28 (4): 175–184.

    Article  Google Scholar 

  • Laufer H, Ahl J S B, Sagi A. 1993. The role of juvenile hormones in crustacean reproduction. American Zoologist, 33 (3): 365–374.

    Article  Google Scholar 

  • Li B, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA–Seq data with or without a reference genome. BMC Bioinformatics, 12: 323.

    Article  Google Scholar 

  • Liang S S, Zhang Z F, Yang D D, Chen Y Y, Qin Z K. 2017. Different expression of sox17 gene during gametogenesis between scallop Chlamys farreri and vertebrates. Gene Expression Patterns, 25–26: 102–108.

    Article  Google Scholar 

  • Liu Y, Hui M, Cui Z X, Luo D L, Song C W, Li Y D, Liu L. 2015. Comparative transcriptome analysis reveals sexbiased gene expression in juvenile Chinese mitten crab Eriocheir sinensis. PLoS One, 10 (7): e0133068.

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real–time quantitative PCR and the \({s_j} = {\beta _j} + \overline {{\beta _{n - j}}}p\) method. Methods, 25 (4): 402–408.

    Article  Google Scholar 

  • Ma K Y, Lin J Y, Guo S Z, Chen Y, Li J L, Qiu G F. 2013. Molecular characterization and expression analysis of an insulin–like gene from the androgenic gland of the oriental river prawn, Macrobrachium nipponense. General and Comparative Endocrinology, 185: 90–96.

    Article  Google Scholar 

  • Manor R, Aflalo E D, Segall C, Weil S, Azulay D, Ventura T, Sagi A. 2004. Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebrate Reproduction & Development, 45 (2): 151–159.

    Article  Google Scholar 

  • Manor R, Weil S, Oren S, Glazer L, Aflalo E D, Ventura T, Chalifa–Caspi V, Lapidot M, Sagi A. 2007. Insulin and gender: an insulin–like gene expressed exclusively in the androgenic gland of the male crayfish Cherax quadricarinatus. General and Comparative Endocrinology, 150 (2): 326–336.

    Article  Google Scholar 

  • Mareddy V R, Rosen O, Thaggard H B, Manor R, Kuballa A V, Aflalo E D, Sagi A, Paterson B, Elizur A. 2011. Isolation and characterization of the complete cDNA sequence encoding a putative insulin–like peptide from the androgenic gland of Penaeus monodon. Aquaculture, 318 (3–4): 364–370.

    Article  Google Scholar 

  • Nagaraju G P C. 2007. Is methyl farnesoate a crustacean hormone? Aquaculture, 272 (1–4): 39–54.

    Article  Google Scholar 

  • Nakagawa Y, Henrich V C. 2009. Arthropod nuclear receptors and their role in molting. FEBS Journal, 276 (21): 6 128–6 157.

    Article  Google Scholar 

  • Olmstead A W, Leblanc G A. 2002. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. Journal of Experimental Zoology, 293 (7): 736–739.

    Article  Google Scholar 

  • Qiao H, Xiong Y W, Jiang S F, Fu H T, Sun S M, Jin S B, Gong Y S, Zhang W Y. 2015. Gene expression profile analysis of testis and ovary of oriental river prawn, Macrobrachium nipponense, reveals candidate reproduction–related genes. Genetics and Molecular Research, 14 (1): 2 041–2 054.

    Article  Google Scholar 

  • Rosen O, Manor R, Weil S, Gafni O, Linial A, Aflalo E D, Ventura T, Sagi A. 2010. A sexual shift induced by silencing of a single insulin–like gene in crayfish: ovarian upregulation and testicular degeneration. PLoS One, 5 (12): e15281.

    Article  Google Scholar 

  • Rosen O, Weil S, Manor R, Roth Z, Khalaila I, Sagi A. 2013. A crayfish insulin–like–binding protein: another piece in the androgenic gland insulin–like hormone puzzle is revealed. Journal of Biological Chemistry, 288 (31): 22 289–22 298.

    Article  Google Scholar 

  • Rotllant G, Nguyen T V, Sbragaglia V, Rahi L, Dudley K J, Hurwood D, Ventura T, Company J B, Chand V, Aguzzi J, Mather P B. 2017. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus. BMC Genomics, 18: 622.

    Article  Google Scholar 

  • Senarai T, Saetan J, Tamtin M, Weerachatyanukul W, Sobhon P, Sretarugsa P. 2016. Presence of gonadotropin–releasing hormone–like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis. Cell and Tissue Research, 365 (2): 265–277.

    Article  Google Scholar 

  • Siangcham T, Tinikul Y, Poljaroen J, Sroyraya M, Changklungmoa N, Phoungpetchara I, Kankuan W, Sumpownon C, Wanichanon C, Hanna P J, Sobhon P. 2013. The effects of serotonin, dopamine, gonadotropinreleasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. General and Comparative Endocrinology, 193: 10–18.

    Article  Google Scholar 

  • Smith C A, Katz M, Sinclair A H. 2003. DMRT1 is upregulated in the gonads during female–to–male sex reversal in ZW chicken embryos. Biology of Reproduction, 68 (2): 560–570.

    Article  Google Scholar 

  • Sroyraya M, Chotwiwatthanakun C, Stewart M J, Soonklang N, Kornthong N, Phoungpetchara I, Hanna P J, Sobhon P. 2010. Bilateral eyestalk ablation of the blue swimmer crab, Portunus pelagicus, produces hypertrophy of the androgenic gland and an increase of cells producing insulin–like androgenic gland hormone. Tissue and Cell, 42 (5): 293–300.

    Article  Google Scholar 

  • Storey J D. 2003. The positive false discovery rate: a Bayesian interpretation and the q–value. Annals of Statistics, 31 (6): 2 013–2 035.

    Article  Google Scholar 

  • Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA–Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28 (5): 511–515.

    Article  Google Scholar 

  • Tropea C, Hermida G N, López Greco L S. 2011. Effects of androgenic gland ablation on growth and reproductive parameters of Cherax quadricarinatus males (Parastacidae, Decapoda). General and Comparative Endocrinology, 174 (2): 211–218.

    Article  Google Scholar 

  • Vázquez–Islas G, Guerrero–Tortolero D A, Garza–Torres R, Álvarez–Ruiz P, Mejía–Ruiz H, Campos–Ramos R. 2015. Quantitative analysis of hypertrophy and hyperactivity in the androgenic gland of eyestalk–ablated male Pacific white shrimp Litopenaeus vannamei during molt stages. Aquaculture, 439: 7–13.

    Article  Google Scholar 

  • Ventura T, Bose U, Fitzgibbon Q P, Smith G G, Shaw P N, Cummins S F, Elizur A. 2017. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. The Journal of Steroid Biochemistry and Molecular Biology, 171: 262–269.

    Article  Google Scholar 

  • Ventura T, Manor R, Aflalo E D, Weil S, Raviv S, Glazer L, Sagi A. 2009. Temporal silencing of an androgenic glandspecific insulin–like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology, 150 (3): 1 278–1 286.

    Article  Google Scholar 

  • Ventura T, Sagi A. 2012. The insulin–like androgenic gland hormone in crustaceans: from a single gene silencing to a wide array of sexual manipulation–based biotechnologies. Biotechnology Advances, 30 (6): 1 543–1 550.

    Article  Google Scholar 

  • Yang M L, Wu Y, Jin S, Hou J Y, Mao Y J, Liu W B, Shen Y C, Wu L F. 2015. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G–Quadruplex prediction based on transcriptome. P L oS One, 10 (3): e0118479.

    Article  Google Scholar 

  • Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA–seq: accounting for selection bias. Genome Biology, 11 (2): R14.

    Google Scholar 

  • Zhang F, Lv J J, Liu P, Gao B Q, Li J, Chen P. 2015. Cloning and expression of chitinase under low salinity stress during molting in P ortunus trituberculatus. Oceanologia et Limnologia Sinica, 46 (4): 948–957. (in Chinese with English abstract)

    Google Scholar 

  • Zhang F, Lv J J, Liu P, Gao B Q, Li J. 2017. Cloning and expression analysis of the cDNA of PtCht3 in Portunus trituberculatus. Progress in Fishery Sciences, 38 (2): 167–176. (in Chinese with English abstract)

    Google Scholar 

  • Zhang Y N, Xia Y H, Zhu J Y, Li S Y, Dong S L. 2014. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). Journal of Chemical Ecology, 40 (5): 439–451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Cui.

Additional information

Supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2014CP006), the Independent Innovation Program of Qingdao (No. 15-9-1-44-jch) for LIU Lei, and the Shandong Provincial Natural Science Foundation (No. ZR2017QD001) for LIU Yuan

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Liu, L., Hui, M. et al. Primary molecular basis of androgenic gland endocrine sex regulation revealed by transcriptome analysis in Eriocheir sinensis. J. Ocean. Limnol. 37, 223–234 (2019). https://doi.org/10.1007/s00343-019-7254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7254-6

Keyword

Navigation